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Some Recommended Books

UCD Online: 

http://lib.myilibrary.com/Open.aspx?id=273234#

2

https://www.iso.org/standard/50461.html

http://lib.myilibrary.com/Open.aspx?id=273234#


Lockdown Tutorials
• Slides and recordings at: https://physicslabs.ucd.ie/docs/data_analysis/
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https://physicslabs.ucd.ie/docs/data_analysis/


Graphs and Presentation of Data
• Please make graphs a reasonable size in your 

report!

• Make sure to:


• include a title

• label the axes and include units if appropriate

• use an appropriate font size so that all text is 

clearly legible 

• Experimental data points should be presented as 

points, preferably with error bars, and not 
connected by lines.


• Grid lines may be used.

• LaTeX can be used in titles and labels.

• Save as PDF for inclusion in reports.

• See HowTos.
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plt.rcParams['figure.figsize'] = (6,4) 
plt.rcParams['font.size'] = 12         
plt.rcParams['savefig.bbox'] = 'tight'   

Matplotlib pyplot (plt)  - set sizes for notebook:



Graphs and Presentation of Data
• Theoretical curves (incl. best-fit) should be overlaid as continuous curves, possibly with a finer 

sampling than the data points.

• If more than one set of data points/curves use legends to distinguish. 
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Measurement Errors
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• Statistical (or Random) Errors: 

• we cannot measure any physical quantity with infinite precision - there is always some uncertainty on a 

measurement.

• natural fluctuations & environment may cause uncertainty beyond the limit of the instrument.

• when an experiment is repeated several times we find that we do not get the exact same answer each 

time but that the values fluctuate about some mean 

• We assume random errors average to 0 over many repeated measurements.

• Systematic and Non-Statistical Errors are not random fluctuations but additional uncertainties due to 
incomplete/imperfect/incorrect knowledge of experiment/calibration etc.

•Not easy to detect and correct.

•Generally lumped together into the term “Systematics”

• In general when we quote errors on an experiment they are the Statistical Errors.


• Non-Statistical/Systematic Errors may be quoted in addition: , e,g.  x = 1.0 ± 0.1stat ± 0.2sys



Measurement Uncertainty
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• Measurement Errors:

• Type A: derive from statistical analysis of repeated measurements

• Type B: non-statistical, using other information, e.g. from instrument specification.


• Instrumentation Precision:

• Analogue: The statistical error associated with analogue instrumentation is often 

due to how well one can read the scale, and it is often up to the experimenter to 
estimate.


• Digital Meter: Guide: the precision of a digital meter is limited to the last digit. 

• e.g. repeated measurements of a voltage with a digital multimeter gives 8.41 V. We 

would thus quote the voltage as 8.41 ± 0.01 V.

• ADC: resolution limited by number of bits, i.e. range divided by 2N where N is the 

number of bits. ADCs round down!

• Other: instrumentation documentation


• Non-instrumental:

• noise or other errors may be greater than instrument precision

• e.g. measure repeated time intervals with a precision stop watch.

(from Hughes & Hase book)



Mean and Standard Deviation
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For data, the mean, , and (sample) standard deviation, , can be calculated from the 
data as:    


    


and     





(if deriving the mean and the variance from the data)

μ σ

μ = x̄ =
1
N

N

∑
i=1

xi

σ2 =
1

N − 1

N

∑
i=1

(xi − x̄)2



Probability Distributions 
• In Physics experiments/observations the following probability distributions are commonly 

met: 

• Binomial

• Poisson

• Gaussian (also called Normal)
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Binomial Distribution
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•The Binomial Distribution describes the probability of observing  successes out of  tries 
where the probability of success is :





• The mean and standard deviation are given by (without proof):


           





• Notes:


• If  the Binomial distribution is approximated by the Normal distribution. 


• As  becomes large and  ( ) the Binomial distribution is approximated by the 
Poisson distribution.

k n
p

PB(k; n, p) = (n
k) pk (1 − p)n−k

μ = np

σ2 = np(1 − p)

np ≫ 1

n p → 0 np = μ



Binomial Distribution Examples
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• In a certain Physics course 7.3% of students failed and 92.3% passed, averaged over many years. 
What is (a) the expected number of failures in a particular class of 32 students, drawn from the 
same population? (b) the probability that five or more of the 32 students fail?


• If I toss a coin 12 times and get 11 heads do I have significant evidence that the coin is unfair? 
(Note: significant evidence is defined as <5% compatibility level and highly significant as <1% level)


• A hospital admits four patients suffering from a disease which has a mortality rate of 80%. Find 
the probabilities of (a) none of the patients surviving, (b) exactly one survives, (c) two or more 
survive.


• Of a certain type of seed, 25% normally germinate. To test a new germination stimulant, 100 seeds 
are treated with the stimulant and planted.  If 32 of them germinate, can you conclude (at the 5% 
confidence level) that the stimulant helps?



Poisson Distribution
• Poisson (discrete distribution)


• When one counts the number of random events in an interval (time, area, volume, etc) and 
repeats the experiment under identical conditions then one does not always get the same result.


• The distribution of counted events follows a Poisson Distribution:





• where,


•  is the probability of obtaining n events in a given interval 


•  is the mean of the distribution.


• the standard deviation has value 


• The Poisson distribution is the limiting case of the Binomial distribution as  becomes large and 
 ( ), and is applicable to many experiments involving counting events such as 

radioactive decay, photons etc. (In most cases  &  may be unknown/unknowable and only  
measureable)

P(n) =
μn e−μ

n!

P(n)
μ

μ

n
p → 0 np = μ

p n μ
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Poisson Distribution
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Asymmetric!

µ = 0.6

σ =  = 0.775


It does not make sense to quote: 

We need asymmetric error bars!

0.6

0.600 ± 0.775



Propagation of Errors
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• For small means the distribution is asymmetric.

• For means ≳10 the distribution is nearly symmetric and is approximately described by a Gaussian 

distribution of mean µ and standard deviation .  μ

• For dealing with errors (especially propagation) in counting experiments we generally want enough counts 
for the Poisson distribution to be in Gaussian regime.



The Gaussian (Normal) Distribution
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•Statistical Errors tend to follow a Gaussian Distribution

where:


• P(x) dx is the probability of obtaining a value 
between x and x+dx


• µ is the mean (centre) of the distribution


• σ is the width of the distribution


• normalised: area = 1.

P(x) dx =
1

σ 2π
e− 1

2 ( x − μ
σ )2

dx

Standard Normal:  µ=0, σ=1

The Normal distribution is the limiting case of the Binomial distribution when  and . np ≥ 5 n(1 − p) ≥ 5

The Normal distribution is the limiting case of the Poisson distribution when  (note: rough ). μ ≥ 35 > 10



The Gaussian (Normal) Distribution
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• If we know the mean and standard deviation for a set of measurements (or technique), what is 
the probability that a measurement will fall in a given range?

+1σ +3σ+2σ0-1σ-2σ-3σ

68.3% ~1 in 3 outside of range

95.4% ~1 in 20 outside of range

99.7% ~1 in 400 outside of range



Central Limit Theorem
• Why is the normal distribution so prevalent?


• Ans: The Central Limit Theorem


• Irrespective of the parent distribution of some variable, the distribution of the mean of that 
variable tends towards a normal distribution with the same mean, as the number of samples 
becomes large (not many needed for many ‘reasonable functions’!)
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Propagation of Errors
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• Assume we have made some measurements (e.g. length and width) and we want to combine the 
measurements using some formulae to calculate a some property (for example, area). 


• How do we estimate the uncertainty on the final result given we know the uncertainties on the 
initial measurements? (i.e. what is A ± dA ?)


• Use Propagation of Errors Formula (without proof) for Gaussian errors:


• Say  is calculated using values with uncertainties  (i.e. )


• Then, for uncorrelated measurement fluctuations: 





• If the measurement fluctuations are correlated then we have to include an additional term 
called the covariance.

x u, v, … x = f(u, v, …)

σ2
x = σ2

u ( ∂x
∂u )

2

+ σ2
v ( ∂x

∂v )
2

+ …



Propagation of Errors: some common formulae
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x = av ± bv

x = ±auv

x = ±au

v

x = au±b

x = ae±bu

x = a±bu

x = a ln(±bu)

�2
x = a2�2

u + b2�2
v ± 2ab�2

uv

�2
x

x2
=

�2
u

u2
+

�2
v

v2
� 2�uv

uv

�x

x
= ±b

�u

u

�x

x
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�x
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=
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+
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+
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Numerical Propagation of Errors

20

dxu = f(u + σu, v) − f(u, v)

dxv = f(u, v + σv) − f(u, v)

w/o covarianceσu = dx2
u + dx2

v

•Say we have a function  with errors on  and .


•To propagate the error excluding covariance :





•For complicated functions it can be tedious to calculate all of the derivatives. 


•Alternatively, one can use a computer to numerically propagate errors through any formula:

x = f(u, v) u (σu) v (σv)

σ2
x = σ2

u ( ∂x
∂u )

2

+ σ2
v ( ∂x

∂v )
2

+ …



The Mean and Its Uncertainty
•The more measurements of a quantity we make the more precisely we can characterise the 

distribution
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The Mean and Its Uncertainty

22

•What does this distribution tell us?


•The probability of getting a given value in a single 
measurement.


•What is the uncertainty on the mean?


•We know the mean much more accurately than to 
within  ± 1σ of the parent distribution!


•Using Propagation of Errors it is possible to show that 
the uncertainty on the mean is: 


σμ =
σ

N

If N data points are averaged to get the mean, the error on the mean is not the standard 
error/deviation  of the distribution but  (“the standard error on the mean”)σ σ/ N



The Weighted Mean and its Uncertainty
•If we have a set of measurements taken with different uncertainties (e.g. we improve the 

technique or apparatus part of the way through), then we can combine the data using the 
following formulae:
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µ =
�

(xi/⇥2
i )�

(1/⇥2
i )

�2
µ =

1�
(1/�2

i )

“Weighted Mean”

“Error on the Weighted Mean”

Note: the values being combined must be compatible with each other!



Quoting Errors
•Please read Sections 2.8 & 2.9 of Hughes & Hase book!


•General guidance:

•The best estimate of a parameter is the mean.

•The error is the standard error on the mean.

• Perform calculations using all significant figures. 

• Errors are generally only quoted to 1 significant place (unless: lots and lots of data has 

been used to determine the error or the first significant figure is a “1” - then use two)

•Match the number of places in the mean (or parameter being quoted after error 

propagation) to the error.

• e.g. (96.8645 ± 0.2701 ) × 103 Ω should be quoted as (96.9 ± 0.3 ) × 103 Ω

• e.g. (96.8645 ± 0.1435 ) × 103 Ω should be quoted as (96.86 ± 0.14 ) × 103 Ω
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Curve Fitting: least-squares and  fittingχ2
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• The Method of Least Squares involves adjusting the parameters 
of a function so that the sum of deviation of each data point 
squared is minimised,

• e.g. fitting a straight line to data we must find m and c which 

minimise:

source: Wikipedia:

S = ∑
i

[yi − f(xi)]2 = ∑
i

[yi − (mxi + c)]2

• We can also include the errors on the data points to ‘weight’ the 
points by their errors (Chi-squared (χ2) minimisation.):

S = ∑
i [ yi − f(xi)

σi ]
2

= ∑
i [ yi − (mxi + c)

σi ]
2

• Software packages such as scipy.minimise.curve_fit() perform least squared and χ2 minimisations.

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Linear_least_squares_example2.svg/611px-Linear_least_squares_example2.svg.png


Using curve_fit()
• See: https://github.com/UCD-Physics/Python-HowTos/blob/main/Curve_fit.ipynb

•
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https://github.com/UCD-Physics/Python-HowTos/blob/main/Curve_fit.ipynb


 and Goodness of Fitχ2

• The  χ2  test is a test for Goodness of Fit.


• It can be used to compare data with theory (e.g. a theoretical curve is fit to experimental data and we 
make a statement about the probability that the theory and data agrees).


• It can also be used to compare two different data sets to see if they agree.


• Definition:                                    


[* note different errors for counting experiments]


• If we have reasonably good agreement between data and theory then we would expect that we would get a 
contribution of ≈ 1 from each data point to sum.


• This is approximately true, in fact we get χ2 ≈ υ = n - nc where υ is called the “Number of Degrees of 
Freedom” and is equal to the number of data points, n, minus the number of constraints (free parameters 
in fit function), nc, derived from the data.


•  χ2/υ is called the “Reduced Chi Squared” and for a good fit is ≈ 1.

χ2 ≡
N

∑
i=1 (

measuredi − expectedi

error on measuredi )
2
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 and Goodness of Fiχ2
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• χ2  is a distribution with a unique curve for each number of degrees of freedom.


• After finding the optimum parameters by minimising χ2 we can check to see if the χ2  value is reasonable 
for the degrees of freedom in question:


• the reduced χ2  gives a good indication (but interpretation depends strongly on the DOF)


• better: the P-value:


• the probability of obtaining a value of  by chance (for normally distributed errors if the 
model and data agree) is given by integrating the χ2  distribution from the observed value to infinity:

χ2 ≥ χ2
observed

• Look up in table, or

• use scipy.stats.chi2.sf()



Agreement?
• General guidance:


• Comparing Experimental Results with an accepted answer (Hughes & Hase. 3.3.4, p.28):

• up to one standard error, they are in excellent agreement ; 

• between one and two standard errors, they are in reasonable agreement ; 

• more than three standard errors, they are in disagreement .


• χ2  test for goodness of fit (Hughes & Hase. 8.4, p.106):


• very good agreement: P( ) ~ 0.5 


• If P( ) ➔ 1, uncertainties are too large or data is too perfect


• The agreement is questionable if P( ) ≈ 10-3.


• The agreement is bad if P( ) ≲ 10-4

χ2
min; ν

χ2
min; ν

χ2
min; ν

χ2
min; ν
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Always visually inspect your data:
• Visual inspection can reveal 

trends to the eye that are not 
picked up by statistics! 
(especially outliers!) 
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• Example, Anscombe’s quartet:

• all four data sets have the 

same mean and variance for 
x & y, and the same linear fit 
parameters and coefficient 
of correlation

https://en.wikipedia.org/wiki/Anscombe's_quartet


A Complete Example
• https://github.com/UCD-Physics/Python-HowTos/blob/main/Curve_fit.ipynb
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https://github.com/UCD-Physics/Python-HowTos/blob/main/Curve_fit.ipynb

